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The previously formulated mathematical model of the enthalpy-entropy relationship in a series 
of related reactions had been explicitly solved in the special case of corresponding temperatures 
only. In this paper the general case, characterized by an arbitrary set of temperatures and rate 
or equilibrium constants, and including variable weights, has been treated by an iterative proce­
dure, using a computer; the same characteristics have been computed as previously defined. 
In practical examples a similar picture is usually obtained as in the mentioned special case: The 
residual sum of squares shows only one flat minimum, defining the isokinetic temperature /1, and 
a sharp maximum. Exceptionally a different pattern can be obtained from a very irregular set 
of data. The isokinetic temperature can be defined unequivocally in any case but it has not always 
a physical meaning. Hence the most important result of the analysis is the decision, whether 
the isokinetic hypothesis can be rejected or not, the numerical value of /1 being of little signifi­
cance. 

The linear relationship between activation parameters in a series of related reactions, 
called the isokinetic relationshipl-4, is expressed by the equations: 

E* = eo + 2·303 R f3log A or fl.H* = lzo + f3 fl.S* , (Ia, b) 

using the Arrhenius parameters E* and A, or the activation energy fl.H* and activa­
tion entropy fl.S*, respectively. The similar relation between reaction enthalpy fl.Ho 

and standard reaction entropy fl.So reads 

(Ie) 

The proportionality constant f3 is called the isokinetic temperature, while the , inter­
cepts eo or ho have no distinct physical meaning. Similarly as in previous papers4

-
6 

we shall not distinguish between the formulations (la-c) and use the simple sym-
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782 Exner, Beranek: 

boIs flH and flS without superscript to denote either kinetic or thermodynamic 
quantities. Similarly the symbol k will refer either to the rate or equilibrium constant. 

The general significance of the isokinetic relationship for any theory of reactivity is evident; 
only its validity allows one to discuss the reactivity in quantitative, temperature independent 
terms, as substituent effects, ring strain etc. For this reason this relationship has been extensively 
studied and the experimental support searched for l

-
4

. However, the experimental verification 
of the apparently simple equations (la-c) and the estimation of the coefficients involve difficult 
statistical problems, since the two variables have been simultaneously determined from the same 
set of experimental data and hence are mutually dependentS ,6. Particularly the simple plot 
of ilH vs ilS or the regression in these coordinates are falIacious and the result thus obtained 
need not accord with the original kinetic data, as we showed by a mathematical analysis and 
on numerous examples4 ,s. For this reason new procedures have been searched fors - 9, many 
of them being again statistically incorrect6

• 

We advanced subsequently two methods, which were statistically unobjectionable but limited 
in their applications. The original graphical method, based on the plot of log k at two temperatures 
against each others, was applicable to measurements limited to two temperatures and is not 
suitable for a more elaborate mathematical treatment. However, it is always very useful for the 
first orientation6 • The general mathematical model was formulated 6 in the framework of the 
least-squares method in the coordinates log k vs T- 1

• An explicit solution was achieved for the 
special case, when all the reactions were kinetically followed at the same set of temperatures 
and all the measurements have the same weight; the formulae were devised for calculation on 
a desk calculator6

. This special case is rather frequent in practice, and in addition the formulae 
can be applied with a good approximation even when the assumptions are not strictly fulfilled, 
e.g. one measurement is lacking (Example 2). However, when these assumptions would funda­
mentally disagree with the actual pattern, the method is not applicable. Alternatively the use 
of a desk calculator may be found inconvenient and for a computer the explicit solution is of no 
advantage. 

Hence we are dealing in this paper with the general solution of the problem by the 
iteration method using a computer. No explicit solution will be achieved and the 
mathematical analysis is not complete but confined even to such cases as may be 
encountered in practice. 

THEORETICAL 

The mathematical model used is essentially the same as previously6, except that 
different weights of individual measurements are also considered. It is based on the 
general representation of the isokinetic relationship in the coordinates log k vs T- 1 

(Fig. 1). Any reaction obeying the Arrhenius law is represented by a straight line. 
If in addition the isokinetic relationship is fulfilled, all the lines intersect in one point 
with the abscissa {3-1 and ordinate -eo!2'303R{3 . 

Let us formulate the general problem as follows, its applicability to real systems 
will be considered in the next section. · In the coordinates x == T- 1 and y == log k 
a family of I straight lines (1 ~ 3) is given with slopes bi (i = 1, 2, ... , I) and with 

Collection Czechoslov. Chern. Cornrnun. /Vol. 38/ (1.913) 
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a common point of intersection (xo, Yo). Hence the general equation of the i-th 
line reads 

(2) 

On the i-th line mi points are situated (mi ~ 2) with coordinates (xij' Y;j) where 
j = 1,2, ... , mi' Instead of true ordinates Y;j only the values Yij = Y;j + eij are 
available, where eij are random variables with zero average values and variances 
O'~j' The task is to estimate the parameters Xo ( = P-l), Yo( = - eo!2'303RP), hi and 
the average value of 0'2 from the set of values Xij' Yij only; it is supposed that relative 
values of O';j are known or can be estimated. In the framework of the least squares 
method the basic condition has the form 

(3) 

where the weights Wij may be defined as 

(4) 

The estimates xo, Yo and bi are then obtained by solving the system of normal equa­
tions 

LWijYij = Yo Lmi - Xo Lwijbi + LWijbixij , 
ij i ij ij 

LWijXijYij = Yo LWijxij + Xo LWijYij - xoYo LWij + bi(LWijX~ -
j j j j j (5) 

This non-linear set of 1 + 2 equations was solved explicitly in our previous communi­
cation6 in the simple case when wij = 1, mi = m and Xij = Xi' i.e. when all the mea­
surements have the same weight and all the reactions have been followed at the same 
set of temperatures. This pattern is further referred to as the "special case". Now 
a general numerical solution will be outlined, using similar symbols as previously6; 
it follows that all the formulae of tIus paper are transformed by the above three 
constraints into corresponding formulae of ref. 6. 

To achieve the solution let us first consider the simpler linear problem when the 
abscissa of the point of intersection is known, let us denote it by x. The task is to 
estimate its ordinate y, the slopes bi ,x, the residual sum of squares etc. The set (5) 
of normal equations is reduced by the second one and we get for y and bi ,x the solu­
tion: 
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784 Exner, Beranek: 

LWijYij - I[(LWijxij - x LWij) (LWijXijYij - x LWijYij)/XJ 

p = ij i Ljm
i 

_ L[(I~ijXij _j x LWjj)2/XJ (6) 
i i j j 

bj,x = (LwjjXjjYij - x LWijYij - Y LWijXjj + xy LWjj)/Xj , (7) 
j j j j 

where the symbol Xi stands for 

X j = LWijx~ - 2x LWijxij + X2 LWij . 
j j j 

The residual sum of squares Sx, i.e. stiII related to a given x, is given by 

ij ij 

and has f = Lmj - I - 1 degrees of freedom. 
i 

(8) 

(9) 

This calculation can now be repeated for various values of x; one obtains Y and Sx 
as functions of x and one can find the minimum value of Sx (denoted So) by succesive 
approximations. The value of x at this minimum (xo) represents the estimate of the 
isokinetic temperature(xo = p-l), the corresponding values Yo, b i and So are obtained 
by substituting Xo for x into the equations (6) - (9); So has f = Lmi - I - 2 
degrees of freedom. i 

bi 

FIG. 1 

Representation of the Isokinetic Relationship in the Coordinates log k vs T- 1 

Collection Czechoslov. Chem. Commun. !Vol. 38/ (1973) 



Statistics of the Enthalpy-Entropy Relationship. II. 785 

The values of slopes hi can be compared to the slopes hi ,0 of the regression lines 
computed without the constraint of a common point of intersection. These are given 
according to common formulae of linear regression* 

(10) 

Similarly So differs from the sum of squares Soo, related to these unconstrained re­
gression lines, which is given by* 

with f = Imi - 21 degrees of freedom. Of course So is larger or at least equal 

to Soo, th; equality can occur in the particular (unrealistic) case when all the un­
constrained regression lines intersect in one point (it would also be fulfilled for I = 2). 

FIG. 2 

Some Artificial Examples of the Isokinetic 
Relationship with Very Different Tempera­
ture Values of Individual Reactions 

Shown are the set of points and uncon­
strained regression lines, s x (--) and 
y (-:-._._) as functions of x and the optimum 
point of intersection (+ ). 

See ref. IO for all common statistical formulae. 
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Usually So is significantly larger than Soo and by comparing the corresponding stan­
dard deviations So and Soo to each other and to the estimated experimental error 
(6), one can draw conclusions as to the validity of the Arrhenius and isokinetic laws. 
If Soo is not significantly higher than 6, the Arrhenius law is valid within the limits 
of experimental error. If So is not significantly higher than Soo, the isokinetic hypo­
thesis (including the point of intersection at the infinite distance) cannot be rejected. 
Quite rigorously the F-test* can be used for comparisons of Soo, Sx and [) but not So 
since the problem is not linear. However, even a semiquantitative comparison can be 
useful as in the examples of the previous paper6. Finally, the confidence interval 
of Xo can be estimated from the graph of Sx (or Sx) vs x, taking an essentially arbitrary 
limit for sx, based on comparison with [) or with So. 

The final task of the mathematical analysis would be to establish under which conditions 
the problem has a solution, particularly whether the function Sx = f(x) has always a minimum, 
when it has more than one minimum etc. However, having in mind the practical purpose of this 
paper, we shall not deal with the extreme and/ or degenerate cases. Thus, as in the previous com­
munication6

, the analysis will remain incomplete from the mathematical point of view, but 
satisfactory from the practical one. 

The dependence of S x on x is a rational function, generally of the degree (4/- 1), and is 
represented by the ratio of two polynomials of the degree (4/ - 2), see equation (9). It is continu­
ous, single valued, finite and non-negative in the whole range of x, and has a horizontal asymptote 
at the value Soo 

{LWij XijYij - L[(LWijXj ) (LWijYi) ILWijW 
ij i j j j 

LWijxfj - L[(LWijXil ILWijJ 
ij i j j 

(12) 

In general the function Sx can possess several maxima and minima as it is signalized in Fig. 2 
on some artificial (unrealistic) examples. In practical, "reasonable" examples, i.e. when the set 
of x-values is not very different for individual straight lines, the function has often one minimum 
and one maximum only and its shape resembles the curve of the third degree derived6 for the 
special case (see further Fig. 4). In real examples there is little danger that a local minimum is 
found instead of the absolute one, especially when the calculations are controlled by the graphical 
representation, which is strongly recommended. 

The function Y = f(x) is, according to equation (6), also continuous and single-valued in the 
whole range of x, and finite for finite values of x. In general, it is a rational fraction with a poly­
nomial of the degree (21 - 1) in the numerator and of the degree (21 - 2) in the denominator. 
It has one asymptote with the slope 

(13) 

The quantities boo and Soo together represent the solution of a particular problem to draw 
parallel lines through a given set of points by the method of least squares. They are computed 
relatively easily so they can be useful to check the whole calculation. In addition according to Soo 
one can test the hypothesis thal the reaction series is isoenthalpic. In general, the function 
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y = f(x) can have maxima and minima as shown in Fig. 2 on some artificial examples. In 
"reasonable" examples, occuring at practice most frequently, the function is close to its 
asymptote (Fig. 4) and in the "special case" is reduced to a straight line (Fig. 3). 

0·4 -~:: 
l- s"'-----

0·2 

-5 1000lT 10 

FIG. 3 

Isoequilibrium Relationship for the Protonation of Nitroanilines14 

Shown are Sx (--) and y (-.-.-.-) as functions of x, unconstrained regression lines, SOD' sO()' 
0, the isokinetic point (+ ). 

FIG. 4 

Isokinetic Relationship for the Proton Transfer from Nitromethane to Anions of Various Ali­
phatic Acids9 

-- Solution using different weights, ----- with equal weights, - .-.-.- approximate 
solution; limits of experimental errors shown by o. 
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788 Exner, Beranek: 

Similarly as the value of SOC) (or soc» serves to test the isoenthalpic hypothesis, one can also 
test the isoentropic hypothesis using the value Sx(sx) from equation (9) for x = O. Let us denote 
these values Ss(ss). When the isoentropic hypothesis is accepted, one can calculate the pertinent 
slopes bi,s according to equation (7) with x = O. 

APPLICATION 

Before applying the developed formulae to a real example, it is necessary to consider the pre­
sumptions inherent in their derivation. Some of them were discussed previously6 in connection 
with the "special case", other are released in this general case. 

1) The validity of the Arrhenius law in the range of experimental temperatures remains the basic 
precondition. In structural chemistry this law is mostly fulfilled, due to limited accuracy and limit­
ed temperature range accessible in solution kinetics. The validity is tested on the basis of the 
soo value. Some remarks concerning the isokinetic relationship when the dependence of log k 
on T- 1 is not linear, see4

. 

2) As shown previously6, temperature may be always considered as an exact quantity, free 
of error. 

3) When the isokinetic relationship holds, the values eij may be identified with experimental 
errors. If their distribution is normal, the least squares method is fully justified, however, its 
application need not be confined to this case. The normal distribution of log k is a more natural 
assumption than a normal distribution of k, and it is usually preferredll ,12. Our model allows 
us to give each rate (equilibrium) constant a different weight, according to the accuracy of the 
pertinent experiment, as recommended especially by McBride and VilIars13. However, according 
to our previous discussion6, it would be dangerous to give individual reactions different weights 
without very good reasons. In our opinion in most applications of the equations (5) - (13) the 
values of wij should depend only on j, i.e. the accuracy dependent only on temperature; in many 
applications the simplification wij = 1 will be most reasonable. 

4) .The computational procedure in this paper has been devised for a small computer, as 
shown in the Appendix, and is of advantage only in connection with this technique. Hence the 
accuracy of data and their number should be considered, whether they are worth this elaborate 
treatment. A preliminary graphic testS by plotting log k 2j against log k 1j may be useful to decide 
whether the reaction series is homogenous or whether it should be divided into parts, or some 
reactions eliminated etc. In some cases it may be possible to transform the general case into the 
"special case" by completing 1-2 lacking data by extrapolation or interpolation, then a desk 
calculator is used for computation. 6. The results may differ only insignificantly from the exact 
treatment (Example 2). 

The following examples were computed using the program outlined in the Appendix and 
show a complete treatment of a given reaction series and some typical results which may be 
obtained. They are arranged starting with the "special case" and typical normal examples up 
to less regular ones. 

Example 1. Basic dissociation constants of twelwe nitro- and polynitroanilines were measured14 

in sulfuric acid, each at the temperatures 25, 40, 60, 80 and 90°C. Hence it is the "special case" 
which can be treated also using the explicit solution6. We used these data to test our computer 
progra.m and we reproduce the results to show a regular case for comparison. There is an ad­
ditional ground, that it is one of the best examples hitherto known of an exactly fulfilled isokinetic 
relationship. 

Collection Czechoslov. Chern. Cornrnun. /Vol. 38/ (1973) 



Statistics of the Enthalpy-Entropy Relationship. II. 789 

Our calculations using formulae (6)-(13) with equal weights Wjj yielded the values P = 

= -1 740oK, Yo = -1·817 pK units, So = 0·089, soo = 0·096, Soo = 0·241, Ss = 0·098 pK 
units; Sx as function of x ( = r- 1

) is plotted in Fig. 3 by a full line, the dependence of yon x being 
shown by a dot-and-dash line. The unconstrained Arrhenius lines are shown on the same figure 
by light straight lines. This symbolism is maintained in the following diagrams, too. The value 
of soo may be considered as the estimate of the experimental error; it is relatively large for these 
extremely weak bases and strongly affected by some 2-3 big errors. Since So is lower than soo, 
the isokinetic hypothesis must be accepted unconditionally, at any significance level. The same 
conclusion follows from Fig. 3 on the first inspection . Even so, the value of P is rather uncertain; 
if one allowed e.g. the error of 0·125 log units, (corresponding approximately to IX = 0·01), pos­
sible values of P would lie between - 330 K and -ex) or between + 2300 K and +ex). Hence, 
the hypothesis must be admitted that the reaction series is isoentropic; in fact it is not rejected 
even at IX = 0·25 according to the ratio of Ss and soo. However, the series cannot be isoenthalpic 
according to the value of Soo (rejected at !X much less than 0·005). The example shows once more 
the inaccuracy inherent in the value of P even when the validity of the isokinetic relationship 
is beyond any doubt. 

Example 2. Kinetics of the proton transfer from nitromethane to anions of aliphatic and aryl­
aliphaTic carboxylic acids was studied9 in the whole for 19 acids, including 15 acids at the tem­
peratures 15, 25, and 35°C, two at 10, 20, 30, and 40°C, and other two at 15, 20, 25, and 35°C. 
Estimation of the isokinetic temperature was attempted by the original authors using a principally 
incorrect method9 with the result P = 102 K. We have made two separate calculations according 
to formulae (6)-(13). In the first one weights have been introduced according to the reported 
standard errors of individual rate constants9

, which varied strongly from 0·0006 to 0·086 log 
units with the median value of 0·0086. In this respect this example represents an exceptional case, 
the extreme values of weights being in the ratio 1: 20000. The calculation with weights yielded 
the results P = -2820 K, Yo = 12·841 log units, So = 0·0077, soo = 0·0043, Soo = 0·012, Ss = 
= 0·0077 log units, Sx as function of x is ploted in Fig. 4 with a full line. The value of soo shows 

FIG. 5 
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Isokinetic Relationship for the Hydrolysis of Substituted 9-Chloroacridines15
,16 

--With different weights, ----- with equal weights. 
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that less precise measurements have little influence on the overall accuracy, they are practically 
ruled out by their extremely low weights. The ratio of So to soo is significant even at the level 
ex = 0·005 (F-test used with an approximative validity). Hence the isokinetic hypothesis is to be 
rejected and so is, of course, also the particular case, the isoentropic hypothesis (according to the 
ratio of Ss to soo, F-test used rigorously). On the other hand the value of So is still rather low 
when compared with other reaction series, so that one can speak about an approximate validity 
of the isokinetic relationship within given limits of accuracy, say 0'08 log units. The value of P 
has little significance when the isokinetic relationship does not hold; this is confirmed by attempt­
ing to construct its confidence interval. When e.g. the error of 0·012 log units is allowed, possible 
values ofp are between 700 K and infinity, or any negative value. To conclude, the uneven preci­
sion combined with the narow temperature interval does not allow more definite results. 

The second calculation has been carried out with equal weights of all measurements and yielded 
rather different results p = 640 K, Yo = 4·148 log units, So = 0'039, soo = 0'023, set:) = 0'065, 
Ss = 0·046 log units, Sx as function of x is shown in Fig. 4 with a broken line. The large difference 
of the overall accuracy (soo) against the first calculation is remarkable. It means that measure­
ments denoted as less precise in fact deviated significantly from Arrhenius lines; their influence 
was supressed by their low weights in the first case. The ratio of So to soo is significant at the level 
ex = 0'005, so that the isokinetic relationship is to be rejected as in the preceding calculation. 
The difference in P between the two calculations (the full and dashed arrows in Fig. 4) is unim· 
ported when the isokinetic relationship does not hold. Note that relatively large differences 
between the two kinds'of calculation are due to an extreme variability of weights. In fact the set 
of data is different in both cases since some points and one whole line are disqualified by their 
low weights. Sets of such uneven data are not convenient for processing, a better decision would be 
to disregard the least dependable ones completely. 

In addition the third, approximate calculation was carried out according to the formulae 
of the explicit solution in the special case6 . For this purpose two excessive measurements at 20°C 
were simply neglected and the data at 10, 20, 30 and 40°C (for two compounds) plotted in Arr-
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Isokinetic Relationship for the Reaction of Chloro- and Bromo-nitronaphthalenes with Pi peri­
dine17 

--With different weights, ----- with equal weights. 
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henius graphs and replaced by the interpolated ones at 15, 25, and 35°C, accounting approximate­
ly even for the scatter. By this rather arbitrary procedure a homogenous set of 19 X 3 data was 
obtained and worked up on a desk ca1culator6 with the results fJ = 622 K, Yo = 3·916 log units, 
So = 0'041 , soo = 0,024, Soo = 0'066, Ss = 0·047 log units; the curve of Sx vs x (dotted line) 
differs little from the broken one in Fig. 4. The good agreement with the exact results thus makes 
even this crude approximation usable, particularly when the computer program is not available. 

Example 3. The hydrolysis of 9-chloroacridine and its methyl-, methoxy-, and nitro-derivatives 
in all positions (altogether 13 compounds) in 80% acetic acid was kinetically studied15 •16 at 
various temperatures in the range of 15-90°C; for an individual compound the temperature 
interval was between 10° to 40°. The value of fJ = 417 K was claimed15 •16 (crossed arrow in Fig. 
5). Fig. 5 also shows that the distribution of points is rather far from the regular "special case" 
and the computer treatment is thus inevitable. The first calculation has been carried out with 
unequal weights according the standard errors given15 •16, which again varied strongly from 
0·0008 to 0·028 log units, but not so much as in the preceding example. We obtained the results 
fJ = 516 K, Yo = 1·584 log units, So = 0'024, soo = 0'009, Soo = 0'045, Ss = 0·034 log units, 
Sx shown in Fig. 5 by the full curve. The whole pattern differs from previous examples by the double 
maximum on the Sx curve and by non-linear dependence of yon x (dot-and-dash line). However, 
these irregularities do not affect the region where the minimum is situated and cannot prevent 
its determining. The Arrhenius law is valid within the experimental error; again the most inac­
curate result does not affect the accuracy. The isokinetic hypothesis is rejected at IX = 0·005 ac­
cording to the ratio of So to sao. The value of fJ is unimportant when the isokinetic relationship 
does not hold. 

A recalculation with equal weights yielded a similar qualitative picture, but a significantly 
lowered accuracy: fJ = 518 K, Yo = 1·800 log units, So = 0,052, sao = 0'032, Soo = 0'082, 
Ss = 0·065 log units, Sx shown by the dashed curve in Fig. 5. The difference in sao between the two 
calculations is clearly again caused by some imprecise measurements, which are disqualified 
by their low weights. The extreme values of weights are now in the ratio 1 : 1 200; due to small 
number of points on one line, some lines are completely depreciated. Nevertheless the values 
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FIG. 7 

Isoequilibrium Relationship for the Dissociation ofmeta-Substittuted Phenols18 

The remote part of the curve is shown separately on the left on a smaller scale. 
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of P and the whole pattern are rather similar, they seem not to be affected by several gross errors. 
Another difference is that the isokinetic relationship in now rejected only at the 0·05 level ac­
cording the So to soo ratio; it would be, however, accepted at any lower rx. For P even a confidence 
interval, although a broad one, may be constructed. E.g. for the error of 0·06 log units it would 
extend from 435 to 1160 K. The final decision is thus affected by gross errors in this sense that 
these mask smaller systematic deviations and do not allow significant rejecting of the isokinetic 
hypothesis. 

Example 4. The nucleophilic substitution of nitro-substituted chloro- and bromonaphthalenes 
with piperidine in benzene was followed 17 at different temperatures (between 10 to 140°C) due 
to different reactivity, each reaction only in the interval of 15-20°. The standard errors of indi­
vidual rate constants vary less than in the previous examples, i .e. from 0·0013 to 0·026 log units, 
nevertheless the extreme values of weights are thus in the ratio 1 : 400. Hence the difference is not 
so striking between the two calculations with and without weights. In the first case, with unequal 
weights, we obtained the results P = -569 K, Yo = 7'702 log units, So = 0'018, soo = 0'018, 
S oo = 0'029, Ss = 0·022 log units, Sx shown as a function of x by the full curve in Fig. 6. Since 
the distribution of points is again rather irregular, the whole pattern differs from the "special 
case"; characteristic is the double maximum of the sx-curve (shown on a different scale) and the 
non-linear y-curve (dot-and-dash). The isokinetic hypothesis is to be accepted unconditionally 
(so < soo), even the isoentropic one is rejected only at rx = 0,10, i.e. also admitted. Fig. 6 also 
reveals that any confidence interval of P would be very broad, including high positive and almost 
all negative values. 

The second calculation, with equal weights, yielded the results: P = -659 K, Yo = 7·470 log 
units, So = 0'025, soo = 0'020, Soo = 0'054, Ss = 0·035 log units, Sx shown by a broken line 
in Fig. 6. The small difference of soo of the two calculations suggest that there are no gross 
errors (with low weights) within the measurements. There is also no striking difference between 
the two values of the isokinetic temperature. The isokinetic hypothesis is still accepted (it would be 
rejected only at rx = 0'10) but the isoentropic one is rejected more significantly (at rx = 0·01). 
In agreement the confidence interval of P is somewhat closer than in the first calculation (Fig. 6) 
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Isoequilibrium Relationship for the Dissociation of Substituted Cyanoacetic Acids19 

The full line corresponds to the whole temperature interval, broken lines to its two halves. 
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even when still rather broad. To conclude it should be pointed out that the basic set of data 
is rather inhomogenous and arose by mixing two subgroups of compounds with very different 
reactivies. Such sets cannot be recommended for significant testing of the isokinetic relationships 
and the results obtained must be judged cautiously. 

Example 5. Dissociation constants of four 3-substituted phenols were measured18 in water 
at the temperatures between Sand SO°C, or between 5-60°C, increasing by SoC. The isokinetic 
temperature P = - 69 K was claimed18 (the crossed arrow in Fig. 7). Since there is little difference 
in temperatures for individual reactio'ns, the overall pa ttern is almost regular, the numerical 
data obtained being p = -S2 K, Yo = -14·686 pK, So = 0,0117, soo = 0·0108, Soo = 0·0126, 
Ss = 0·030 log units. In the original literature, the data were worked up by a non-linear equation, 
whereas our treatment was restricted to linear Arrhenius law. Even so, the value of soo reveals 
a quite satisfactory accuracy. The isokinetic relationship cannot be rejected even at ex = 0·2S. 
However, any reasonable confidence interval for P cannot be constructed, as it follows at the 
first inspection from Fig. 7. E.g. for the error 0·016 log units (corresponding approximately 
to ex = 0·01 based on so) this interval would be -250 - 50 K, including thus the isoenthalpic 
hypothesis P = O. In addition Fig. 7, particularly the remote part of the curve, pictured 
on the left on a changed scale, reveals that there are several local minima and the right one is not 
easy to find. Hence the only reasonable decision is to consider this reaction series to be isoenthalpic, 
in fact this hypothesis can be rejected only at ex = 0·25 but not at ex = 0·1. The isoentropic hypo­
thesis is rejected safely (ex ~ 0·005). 

E xample 6. Dissociation constants of cyanoacetic acid and three its derivatives were measured 
very accurately19 at nine temperatures increasing by 50 from 50 to 45°C. The results were proces­
sed by a non-linear equation for the temperature dependence and an isokinetic relationships 
was found by a wrong procedure with P somewhat dependent on temperature, viz. 322- 328 K. 
Our calculations yielded the results P = 259 K, Yo = 2·237 pK units, So = 0·027, sao = 0·007, 
S oo = 0·032, Ss = 0·033 log units . The value of soo confirms the accuracy of the measurements 
and approximate validity even of the linear relationships. Any isokinetic relationships is clearly 
non-existent, it could be rejected at ex much less than O·OOS. The curve in Fig. 8 is characteristic 
by its low maximum (due to small differences of reactivity between individual compounds) and 
flat but high situated minimum. This finding is in no connection with the non-linear temperature 
dependence since essentially the same results are obtained, when dividing the data into two halves, 
those at higher and lower temperatures (dashed curves in Fig. 8). The two pertinent isokinetic 
temperatures differ significantly (dashed arrows) but the comparison of So with sao yields the same 
results as formerly . This example shows once more, that improper statistical treatment can pro­
duce results which completely disagree with original experimental data; the crossed arrow, 
corresponding to the erroneous values19 of P, is situated near the maximum of the curve. 
The original data are again inhomogenous and not suitable for isokinetic investigations since 
the reactivity of one compound is quite different from the others. . 

DISCUSSION 

Along the lines given in the preceding section we have analyzed further reaction 
series where data of sufficient quality and quantity were available. The results in prin­
ciple confirmed out previous views6 as to the nature and significance of the isokinetic 
relationship, so that relatively little can be added to the discussion. 

In the following we summarize, what kind of information can be obtained from 
such analysis and particularly from individual numerical quantities. 
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The value of Soo may either represent an estimate of the experimental error or the 
deviation from the Arrhenius law. A decision is possible by comparing with another 
estimate of the former, obtained e.g. from fits to a particular kinetic equation or from 
repeated experiments. We believe that the Arrhenius equation is sufficient for most 
routine work in solution kinetics, or, at least, the effort connected with a more 
elaborate treatment1 ,20,21 is ' usually not proportionate to the improvement achieved. 
Hence, we regard Soo in most cases as an estimate of the experimental error, and 
in this function it is in our opinion more reliable than separate estimates from indi­
vidual kinetics runs, For this reason we do not recommend6 to put individual rate 
constants8 into equations (6) - (13) with different weights, unless significant dif­
ferences in their accuracy have been proved, e.h. by the F-test. Examples 4 and 
even 3 show that including of weights sometimes does not alter the final results 
significantly; when it does, a gross error can be suspected. Then the effort of the 
experimenter must be directed to bring all the measurements to the same level of ac­
curacy. Very low weights in fact eliminate the pertiment data from the computation. 

In the other case, when Soo and (j differ significantly, the former represents deviation 
from the Arrhenius equation and our whole treatment is not exactly applicable. 
Either the temperature interval must be divided (Example 6), or, if the accuracy 
of data allows, a more general treatment22 with temperature variable activation 
parameters can be attempted. 

The values of So represents the most important result and its comparison with Soo 

is the clue to the whole analysis. Although the F -test may not be used rigorously 
to this purpose, a qualitative comparison is usually sufficient. The result can either 
be that the isokinetic hypothesis is rejected, or, that it cannot be rejected on the basis 
of the available data. 

In the latter case there are two possible explanations: Either the isokinetic relations­
ship is in fact valid, or it is not, but the data are not sufficient for proving it. Possible 
reason may be the low accuracy of individual rate constants, small number of data, 
unsufficient differencies in reactivity between individual reactions, or a narrow 
temperature interval; particularly the last factor is usually the limiting one and often 
invalidates otherwise ample and careful work. 

Having in mind the approximate character of the isokinetic relationship, we must 
understand the term of its validity in a quantitative sense, i.e. within the limits of a gi­
ven accuracy and in a given temperature interval. The comparison with Sao need not 
be the only criterion, since the experimental accuracy can be in principle always 
improved and finally almost any isokinetic relationship could be disproved. While 
the ratio so/sao gives answer to the question, whether the relationship is valid with 
respect to the attained experimental accuracy, one can ask another question, whether 
it is approximately valid with respect to requirements and usual accuracy of other 
extrathermodynamic relationships. Then one can choose an. arbitrary value of stan­
dard deviation and speak about· the, validity of the isokinetic , relationship within 
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this accuracy (Example 2). We hope to return to this fundamental question once 
more. 

The dependence of Sx on x is a much telling result, particularly when combined 
with the Arrhenius plot and plot of y vs x. In a graph of this type (Figs 3 - 8) the 
value of So is included, of course. The graph enables us to control the remaining 
results and, when there are several minima on the curve, to identify the absolute 
one. In addition the shape of the curve gives a general idea about the validity of the 
isokinetic relationship and reliability of the results obtained. A very irregular pattern 
(like Fig. 2, or Fig. 6) does not allow to define the temperature range in which the 
isokinetic relationship holds; such extreme cases should be disregarded. On the other 
hand very flat plain curves (Fig. 7 of ref. 6 or Fig. 8 of this paper) are usually due to 
a too narrow temperature interval, or small differences in reactivity and do not allow 
any more definite conclusion. 

Referring to the postulates of the preceding paragraphs we may summarize that 
the validity of the isokinetic relationship should be examined in a temperature 
interval not too narrow (with respect to the accuracy) and not too large (with respect 
to the limited validity), and all the reactions should be studied at nearly the same 
temperatures ("regular" pattern). The validity of the isokinetic relationship, when 
proved, is always restricted to the temperature interval studied; of course such a limita­
tion holds for many concepts of theoretical chemistry. 

Among the values of Sx there are two of particular interest: Soo at T = 0 and Ss at 
T -+ 00. They enable us to test, whether the reaction series may be isoenthalpic 
or isoentropic, respectively. Particularly Soo should be ever compared with Sao' and 
when the difference is not significant, the isoenthalpic hypothesis is accepted and 
preferred to any other value of p (Example 5). Of course, an apparently isoenthalpic 
reaction series is found always when the data are inaccurate or temperature interval 
too narrow. The result should be then formulated that the poor information does not 
allow to reject any hypothesis, hence neither the isokinetic one. The isoentropic 
reaction series seem to be less common, much less than it was formerly supposed4

• 

The isokinetic temperature P is a characteristic constant, usually attributed a much 
more importance than it in fact has. Our mathematical procedure always yields 
a single value of p, even when the isokinetic relationship does not hold at all; or, 
on the other hand, when possible values of P lying in a broad interval must be ad­
mitted. Such values have a purely mathematical meaning of course. Let us still 
remember that negative values are quite often (Examples 1, 4, 5) and that high values 
are loaded with a large error since the reciprocal is primarily determined. For this 
reason the quantity I' = p-l would be more objective and less misleading as to its 
physical meaning, however, this symbol has been also used in another sense4

• 

It follows that an interval estimate of p would be of much value, it is, however, 
ve~y difficult to give its general definition. The graph Sx vs x allows to determine 
the c~nfidence interval for p provided that a value of the permissible standard de-
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viation is given. It is usually estimated on the basis of Soo (or D) and a chosen ct, 

but when So is significantly higher than Soo, a narrow interval for p is obtained, si­
mulating a high precision. Instead, the correct interpretion would be that the iso­
kinetic relationship is probably invalid, or, if valid, only values of P in a narrow 
interval are permissible. AI} alternative estimate of the confidence interval of p, 
based on So and a certain ct, would characterize the shape of the curve near its mini­
mum, irrespective of the validity of the isokinetic relationship. This is a valuable 
information in itself, however, it can give a wrong idea if the isokinetic relationship 
is invalid. Thus the only unambigous statement is a confidence interval together 
with a corresponding permissible standard deviation and the main result of the discus­
sion is that the meaning of P should not be overestimated and attention focused 
rather to the values So, Soo, sx, and to the question whether the isokinetic relationship 
can be rejected or not. 

APPENDIX 

Computation according to the equations (6)-(13) was programmed for the small digital com­
puter Odra 1013 in the autocode Most-I. In the input the following data are given: The starting 
value of x ( = T- 1

), iength of the step in x, number of steps, accuracy in finding So' number 
of reactions (I), number of points in each reaction (m), set of data temperature - rate (equilibrium) 
constant - its error. Temperature may be given in °C or in reciprocal K, rate (in s -lor in mol- 1 . 

. I S -1) or equilibrium constants either as k or log k, errors in ± ok or in ± o log k; the program 
is modified with buttons as the case may be. With another button, rate and equilibrium data are 
distinguished. 

In the output we obtain sets of values x, y, Sx' Sx for each step, computed according to the 
equations (6)-(9), in addition S oo, soc; , Soo, soo according to the equations (12) and (11). Then 
the minimum of Sx is found by successive halving of the appropriate interval of x with the 
programmed accuracy and the values x o, Yo' So' so' pin K and in °C, are printed, in addition 
b i for each line and b oo according to the equations (7) and (13), respectively. If there is no minimum 
within the interval investigated, this statement is printed instead of the numerical values and the 
program continued. Further the unconstrained parameters are printed for each reaction, i.e. 
!1Ho and ASo in the case of equilibrium and E*. log A, !1H* and !1S* in the case of kinetics. 
Finally the same parameters appear constrained by the isokinetic condition, i.e. the so-called 
isokinetic parameters6

. When no minimum has been found, these parameters are computed 
assuming an isoenthalpic series, i.e. from the value boo for all the reactions. Of course the re­
action series need not to be in fact isoenthalpic, it may happen that the minimum escapes due 
to the unproperly chosen interval of computation. In this case the procedure is to be repeated 
with changed values of starting parameters. 

We recommend to combine the computation with the graphical representation like Figs 3- 8. 
It enables one to correct the interval investigated, if necessary, to discern the isoenthalpic series 
etc. In most series the interval from x = -0·002 to x = 0·005 (corresponding to -500 and 
+ 200 K respectively), is sufficient, a convenient step width is 0·0002. 

Thanks are due to the head of this Institute Prof M. Veeefafor making the Odra digital computer 
available and for his interest, and to Dr V. Stepanek, and Dr S. Wold, Umea,for valuable comments 
from the fields of mathematical statistics and computer technique. 
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LIST OF SYMBOLS 

A preexponential factor 

bi' bi,O' bi,x 

boo, bi,S 

slopes of the Arrhenius lines (isokinetic, unconstrained, constrained, isoenthalpic, 
isoentropic) 

eij 

eo 
E* 

f 
Ito 
I!..H 
I!..H o 

I!..H* 

I!..Hiso 

j 

k 
I 

mi 

so' soo, Sx 

soo, Ss 
So, Soo, Sx 
Soo, Ss 
I!..S 
I!.. SO 

I:1S* 

I:1Siso 
wij 

xij 

random variable (error) 
intercept in the equation (1a) 
Arrhenius activation energy 
degrees of freedom 
intercept in the equations (1b) and (Ie) 
symbol for the activation or reaction enthalpy 
reaction enthalpy 
activation enthalpy 
isokinetic enthalpy (of activation or reaction) 
index pertinent to a straight line (reaction) 
index pertinent to a point (temperature) 
symbol for rate or equilibrium constant 
number of straight lines (reactions) 
number of points on the i-th line 
standard deviations (isokinetic, unconstrained, 
constrained, isoenthalpic, isoentropic) 
residual sums of squares (isokinetic, unconstrained, constrained, isoenthalpic, 
isoentropic) 
symbol for activation or reaction entropy 
reaction entropy 
activation entropy 
isokinetic entropy (of activation or reaction) 
weight of a measurement 
independent variable (= T -1) 

x, Xo abscissa of the point of intersection (supposed or actual) 
Xi auxiliary function defined by Eq. (8) 
Yij dependent variable ( = log k) 

Y, Yo ordinate of the point of intersection (supposed or actual) 
IX significance level 
P isokinetic temperature 
y reciprocal value of P 
<5 experimental error 
afj variance of the variable ei ) 

Note added in proof; The whole computation, as well as the simpler procedure in the special 
case6, have been also programmed for the Hewlett-Packard calculator 9820 A. Programs are 
available on request and will be submitted to the H. P. Users Club. 
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